
International Journal of Theoretical Physics, Vol. 46, No. 5, May 2007 ( C© 2006)
DOI: 10.1007/s10773-006-9269-y

Energy Transfer in Spectra of the d-Dimensional
Past Grid Turbulence

M. Hnatich,1 S. Sprinc,1 M. Stehlik,1,2 and F. Tomasz1

Received 10 July 2006; accepted: 29 September 2006
Published Online: November 29 2006

Free decay theory of the homogeneous and isotropic developed turbulence is considered
in the d-dimensional case. The basic quantities under our consideration are the kinetic
energy spectrum E(k, t) and energy transfer spectrum T (k, t) as functions of wave
number k and decay time t . Starting point for studying E and T represents their
adaptation from the stationary model which predicts the Kolmogorov spectrum which
is multiplicatively dependent on an unknown scaling function F . In order to study the
spectra of decaying turbulence both parameters l and ε are supposed to be dependent
on t . Formerly derived basic integro–differential equation for F (by Adzhemyan et al.,
1998) has been here solved numerically in the dimension interval d ∈ (2, 3) for two
cases of the Saffman invariant and the Loitsyansky integral fixing an arbitrary theory
parameter α (α = 2 and 4, correspondingly). The energy transfer spectrum T (k) has
been analyzed for several dimensions d ≤ 3 showing the presence of integration regions
in the wavenumber space where an inverse energy cascade can occur.

KEY WORDS: decay turbulence; spectral energy transfer; renormalization group.

PACS numbers: 47.27.ef, 47.11.-j, 47.27.er

1. INTRODUCTION

The Kolmogorov’s universality hypothesis (Kolmogorov, 1941) which sup-
poses that inertial range statistics of strongly developed hydrodynamic (HD)
turbulence is independent of the geometry of boundary conditions and dynam-
ics of dissipation scales, has received a remarkable experimental support [see
in Frisch (1995) and ref. therein]. In order to establish the validity of the phe-
nomenologically obtained −5/3 law of the kinetic energy spectrum, first the
renormalization group (RG) method was applied (Dominicis and Martin, 1979) in
the framework of the Wyld’s statistical model of the randomly stirred fluid (Wyld,
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1961). Later developments of the different RG variants in the stochastic hydrody-
namics (Yakhot and Orszag, 1986a, b; Dannevik et al., 1987; Adzhemyan et al.,
1989a, b) were stimulated by the effort to calculate the Kolmogorov constant.

It is a widely spread opinion (Monin and Yaglom, 1975) that spectral prop-
erties of the energy–containing scales are non universal, i.e. the lowest bound
of spectrum evolves due to anisotropy and finite–size effects. The issue of the
universality of energy–containing range has been raised by George (1992), who
analyzed the spectra measured at intermediate distances behind the stirring grid
(i.e. at intermediate decay stages), where such integral quantities like the kinetic
energy or dissipation rate satisfy the power laws in time. By indicating the presence
of a specific scaling or rather variety of scaling forms in decay statistics, George’s
idea extends the standard picture of universality. This idea has been developed in
the previous paper (Adzhemyan et al., 1998) where a more quantitative scaling
theory of decay was formulated. The purpose of the presented paper is to develop
this scaling theory in general d-dimensional space as well as to understand the
energy transfer along k-spectrum in dependence on d.

It is well known (Olla, 1991, 1994; Honkonen and Nalimov, 1996) that for
certain critical dimension dc ∈ (2, 3) in d-dimensional HD turbulence the spectrum
becomes to be non-stable – the scaling regime does not exist. Here we try to find
out how the decaying spectrum depends on the space dimension d.

The present paper follows the plan: in Section 2 we review the known equa-
tions of the past grid turbulence. Section 3 summarizes the quantum–field RG
results obtained for the energy spectrum and energy transfer of the inertial and
energy–containing range which represent the starting point of decay analysis.
In Section 4 the d-dimensional model of the decay is introduced and integro–
differential equation for the scaling function is derived. Method of the scaling
function calculation with the special emphasis on the various asymptotics of the
spectra is also discussed. Numerical computing of the scaling function in Section
5. is suggested for d-dimensional decay with the Saffman’s invariant (part 5.1.) as
well as the Loitsyansky invariant (part 5.2.). An analysis of the energy transfer is
given in Section 6.

2. STOCHASTIC MODEL OF STATIONARY ISOTROPIC
TURBULENCE

The basic equation which reflects the statistics of the strong turbulence is the
randomly forced Navier–Stokes equation

∂τ vj = ν0∇2 vj −
d∑

s

Pjs(∇)(v · ∇) vs + fj, ∇ · v = ∇ · f = 0, (1)
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where Pjs(k) = δjs − kjks/k2 is the transverse projection operator which stands
to ensure the incompressibility of the fluid. Following the tradition of stochastic
models of the turbulence we assume that statistics of the external random force
f(x, τ ) is isotropic and gaussian. It is completely determined by the statistical
average over the ensemble of velocity fluctuations

〈fj (x, τ )〉 = 0, 〈fj (x1, τ1)fs(x2, τ2)〉 = δ(τ12) Pjs(∇x12 ) F (| x12 |) (2)

where τ12 = τ1 − τ2; x12 = x1 − x2 and

F(| x |) =
∫

ddk
(2π )d

ei k·x DF (k). (3)

The forcing spectrum DF (k) is defined by

DF (k) ≡ DF (| k |) = D F (kl) k−d , (4)

where D is the amplitude of the forcing correlations proportional to the mean
injection rate of energy, l is the length scale of size from the energy–containing
range. This scale can be associated with the Karman length scale. We assume
that the region of those k which are much greater than 1/l corresponds to the
upper bound of the inertial range. The explicit form of the function F (kl), which
is one of our main interests is not specified yet and forcing extension caused
by introduction of F (kl) requires some additional remarks. Single point cor-
relation function 〈f(x, τ1) f(x, τ2)〉 is proportional to the energy injection rate
F(0) ∝ ∫ ∞

0 dk kd−1 DF (k). The function kd−1DF (k) represents the contributions
of the separate velocity modes into full energy supply of the forcing. For the
scales which are comparable with l the function F (kl) reflects details of the
forcing mechanism. In spite of this ambiguity, it is reasonable to expect that
maximum of kd−1 DF (k) = DF (kl)/k should be located at k ∝ 1/l. The forc-
ing correlator Eq. (4) can be regarded as an improved version of the basic k−d

power form of Yakhot and Orszag (1986a, b) and Forster et al. (1997) or its exten-
sion k4 [ k2 + (1/l)2 ]−2 × k−d introduced by Dominicis and Martin (1979) and
Adzhemyan et al. (1989a, b). The term 1/l from the last expression plays the role
of the infrared mass (speaking in terminology of the quantum field theory). In the
works mentioned, the use of the simplest k−d forcing (F = 1) was motivated by
the intention to apply the RG method indicating the universality of the inertial
range statistics. The additional limitation to the form of F (kl) is the assumption
that within the inertial range (kl 
 1) the spectrum DF (k) approaches k−d tail.
This is guaranteed by the normalization F (∞) = 1.

The set of the velocity correlation functions is completely determined by the
stochastic model represented by Eqs. (1), (3) and (4). Naturally, the information
implemented by F (kl) is consequently reflected by the properties of the correlation
functions. Pure inertial range statistics is generated in the special case F (kl) = 1.
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Let us proceed to the equation of spectral transfer of the energy which plays
a central role in description of the strongly developed turbulence. If isotropy of
the statistics, incompressibility of the fluid and absence of the external energy
sources are supposed, the energy current conservation in the wave–number space
is expressed by the equation

∂t E(k, t) = T (k, t) − 2 ν0 k2 E(k, t), (5)

where

E(k, t) = 1

2
kd−1 Sd

∫
ddx1

(2π )d
e−ik·x12 〈 v(x1, t) · v(x2, t) 〉, (6)

T (k, t) = −kd−1 Sd

∫
ddx1

(2π )d
e−ik·x12 〈 v(x1, t) (v(x2, t) · ∇x2 )v(x2, t) 〉, (7)

are the energy spectrum and energy transfer, respectively; Sd = 2 πd/2/�(d/2)
is the surface area of d-dimensional sphere of unit radius; �(x) is the Gamma
function; ν0 is the kinematic viscosity. One can easily verify that energy transfer
fulfills the integral identity

∫ ∞

0
dk T (k, t) = 0 (8)

which allows to write the equation of the total energy conservation

∂t E = −ε. (9)

Here the mean kinetic energy E(t) and the mean energy dissipation rate ε(t) are
defined by the integrals

E(t) =
∫ ∞

0
dk E(k, t), ε(t) = 2ν0

∫ ∞

0
dk k2 E(k, t). (10)

It is well known that Eqs. (5), (9) and (10) are transferable to the experimentally
most easily accessible case of the past grid turbulence if the invoking of the Taylor’s
concept of the frozen turbulence (Taylor, 1938; Monin and Yaglom, 1975) is well
justified. For the statistically homogeneous past grid flow, the time of decay t can
be simply related to distance measured in a streamwise direction from the position
of the stirring grid.

3. CALCULATION OF THE ENERGY SPECTRUM AND
ENERGY TRANSFER

To solve the complicated problem of the calculation of the spectral char-
acteristics E(k) and T (k), advanced theoretical tools utilizing the field–theoretic
RG (Dominicis and Martin, 1979; Adzhemyan et al., 1983) and short distance
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expansion techniques (Adzhemyan et al., 1995, 1999) have been applied. The
application was inspired by general approaches developed in the quantum field
theory and critical phenomena. Their excellent summary represents the book of
Zinn-Justin (1989).

By Dominicis and Martin (1979) and Adzhemyan et al. (1983, 1989a, b) was
shown that energy spectrum induced by the D k−d forcing is of the form

E(k) = cE (D)2/3 k−5/3, (11)

where

cE = (d − 1) (g∗)1/3 Sd

4(2π )d
, g∗ = 16 (d + 2) (2π )d

3(d − 1) Sd

. (12)

Here the dimensionless parameter g∗ was fixed by the RG transformation. The
presence of the extended forcing (4) is reflected by the energy spectrum

E(k) = cE (D)2/3 F (kl) k−5/3 (13)

of the inertial and energy–containing scales. The only difference between (11)
and (13) is the presence of F . Already in the simplest case of the inertial range
(F = 1), problems appear in the analysis of the triple velocity correlation function
(see (7)). This function is related to the energy transfer via an integral formula.
In Adzhemyan et al. (1998) the reader can find details of its derivation for the
extended forcing.

According to Adzhemyan et al. (1995) the resulting self–similar form of T (k)
is

T (k) = cT D k−1 ψ {F } (kl) , cT = g∗ Sd

2(2π )d
, (14)

where the structure of the dimensionless scaling function ψ {F }(χ ) of dimensionless
variable χ = k l is

ψ {F } (χ ) = c′
T

∫



dq dp R(q, p ; χ ), c′

T = Sd−1

2d+1 (2π )d
, (15)

R(q, p ; χ ) = K(p, q)
{
F (pχ ) F (qχ ) (pq)−d−2/3 [Q(p, q) + Q(q, p)] (16)

−F (χ )
[
F (pχ ) p−d−2/3Q(p, q) + F (qχ ) q−d−2/3Q(q, p)

] }
,

K(p, q) =
[

2(q2 + q2p2 + p2) − (1 + q4 + p4)
] d−1

2

p q
(
1 + q2/3 + p2/3

) , (17)

Q(p, q) = p4 − p2 + (d − 1 − p2) q2. (18)
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Note that the symbol 
 in the integral (15) denotes the domain of integration:


 ≡ {(q, p); q ≥ 0, |1 − q |≤ p ≤ 1 + q}, (19)

and this integral is rewritten to dimensionless variables
{
p → p

χ

l
, q → q

χ

l

}
(20)

which are introduced in analogy with the dimensionless variable χ = k l .
We emphasize that inertial range critical exponents − 5

3 for E(k) [and −1 for
T (k)] have been calculated perturbatively exactly (Adzhemyan et al., 1983, 1999)
using the epsilon–expansion technique (see e.g. Zinn-Justin, 1989). The stationary
form of T (k) as given by Eqs. (14)–(18) is consistent with the eddy damped quasi-
normal Markovian model (Orszag, 1977; Fournier and Frisch, 1979; Dannevik
et al., 1987). The principal difference between the form of the energy transfer
resulting from the markovianization and similar form given by Eqs. (14)–(18)
consists in the F presence and presence of the constant cT fixed by the RG flow.

4. BASIC EQUATION FOR THE PAST GRID TURBULENCE DECAY

The decay of the free evolving past grid turbulence can be modeled by an
assumption that role of the energy input is played by the ∂t E term, see justification
in (Adzhemyan et al., 1998). Since we are looking for E(k, t) and T (k, t) in the
restricted region of the inertial and energy–containing scales, the viscous effects
can be neglected and equation of the spectral budget is applicable in the truncated
form ∂t E = T .

Assuming the slowness of the time variations and also persistence of the
statistics of the spatial turbulent structures, the decay spectra can be constructed
by modifying their stationary forms [see Eqs. (13) and (14)]:

E(k, t) = cE (D(t))2/3 F (kl(t)) k−5/3, T (k, t) = cT D(t) k−1 ψ {F } (kl(t)) .

(21)
Regardless of the detailed structure of the ψ {F }(χ ), Eq. (21) is compatible with
the self–similar relations postulated by Karman and Howarth (1938).

If the time–dependent scaling forms obtained from Eqs. (13) and (14) are
inserted into inviscid variant of Eq. (5), the equation for the scaling function F (χ )
can be obtained:

φ1(t) χ−2/3

[
1 + φ2(t) χ

d

dχ

]
F (χ ) = ψ {F } (χ ) , (22)

where

φ1(t) = 2 cE

3 cT

[
D(t)

]−1/3
[ l(t) ]2/3 ∂t ln D(t), (23)
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φ2(t) = 3

2

∂t ln l(t)

∂t ln D(t)
. (24)

The differentiation of Eq. (22) with respect to t gives rise to the auxiliary equation
which allows to determine the conditions of its solubility. The complete analysis
of Eqs. (15) and (22) shows that most informative physical solution is obtained
when both c1 and c2 are some integration constants:

φ1(t) = c1, φ2(t) = c2 (25)

and

L̂ F (χ ) = ψ {F } (χ ) , L̂ ≡ c1 χ−2/3

[
1 + c2 χ

d

dχ

]
. (26)

From the normalization F (∞) = 1 and Eq. (26) we conclude that L̂F |F=1 asymp-
totically vanishes

L̂F |F=1 = c1 χ−2/3, for c1 �= 0, χ 
 1, (27)

whereas ψ {F } is equal to zero exactly (McComb, 1990),

ψ {F }(χ )| = 0 for F = 1, (28)

i.e. when the energy spectrum acquires the Kolmogorov form. This finding is
consistent with the weakened variant of Eq. (26)

lim
χ→∞(L̂ F (χ ) − ψ {F }(χ )) = 0. (29)

More restrictive condition

lim
χ→∞ χ2/3 (L̂ F (χ ) − ψ {F }(χ )) = 0 (30)

is used in Section 4.2. to control the asymptotic behaviour of ψ {F }(χ ) and then to
leading order asymptotic of F (χ ).

The solutions D(t) and l(t) have been obtained from Eq. (25) by Adzhemyan
et al. (1998):

D(t) = D0 tαD , l(t) = l0 tαl . (31)

They are compatible with assumption of Karman and Howarth (1938) and it leads
to the following decay laws of the kinetic energy and the energy dissipation:

E(t) = E0 tαE , αE = 2(αD + αl)

3
, (32)

E0 = 4 c3
E α2

D l2
0

9 c2
T c2

1

I {F }, (33)
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ε(t) = −αE E0 tαE−1, (34)

I {F } ≡
∫ ∞

0
dx x−5/3 F (x). (35)

4.1. The Large Scale Structure of the Turbulence

In analogy with McComb (1990) the assumption about the large scale struc-
ture of the turbulence has been supplemented,

lim
k→0

E(k, t)

kα
= �α > 0, α > 0, (36)

where �α and α are some new constant parameters. The choice of α implies the
selection of the flow invariant �α [see below]. From Eqs. (13) and (36) it follows
that

F (χ ) = cF χ (3α+5)/3, as χ � 1, (37)

�α = cF cE D
2/3

l(3α+5)/3, (38)

where cF is some constant. In the result we obtain

c2 = − 3

3α + 5
, αl = 2

α + 3
, αD = −3α + 5

α + 3
, (39)

and αE is defined by relation (32).
The normalization F (∞) = 1 implies that the inertial range spectrum

Ck ε2/3 k−5/3 is achieved when k 
 1/l. Therefore, in analogy with the stationary
case, the Kolmogorov constant is defined here by the relation

Ck = E(k, t)

(ε(t))2/3 k−5/3 F (kl)
. (40)

The Eqs. (13) and (40) involve two different representations of the same energy
spectrum. The time independence of Ck stems from Eq. (40) joining αE and αD .

Let us remark that from Eqs. (10) and (40) one has

E = Ck I {F } ε2/3 l2/3, (41)

and in the result

I {F } = d

2 Ck

. (42)
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Note in addition to Eqs. (25) that the connection between the constant c1 and Ck

is (Adzhemyan et al., 1998):

c1 = − c10√
Ck

, where c10 = 2 (3 α + 5) (cE)3/2

3 d (α + 1) cT

. (43)

Let us now return to the large scale limit (36). One can convince that the
value of �α is connected with the longitudinal velocity pair correlation function

BLL(|x12|, t) =
d∑

j,s

〈vj (x1, t) vs(x2, t)〉 (x12)j (x12)s
|x12|2 , (44)

which can be related to E(k, t) spectrum by means of the relation

BLL(x, t) =
∫ ∞

0
dk E(k, t) ρL(kx), ρL(y) = 2 (sin y − y cos y)

y3
. (45)

This correlation function determines some important characteristics of the phe-
nomenology of decay, namely, dimensional integrals (Monin and Yaglom, 1975)

Iα =
∫ ∞

0
dx xα BLL(x, t). (46)

In fact, using (40) and (38) one obtains the relations

Iα = �α

cF

∫ ∞

0
dy yα βL(y), βL(y) =

∫ ∞

0
dχ ρL(χ y) χ−5/3 F (χ ). (47)

From this connection it follows that time invariance of the asymptotic �α kα im-
plies the invariance of integral Iα (Davidson, 2004). Due to analyticity arguments
[the analyticity is controlled by the parameter α; see Eq. (36)] the most relevant
for study are the choices α = 2, 4, · · ·.

Let us here discuss briefly the sense of Iα , following Chapter 6 in the book of
Davidson (2004). Kolmogorov’s theory tell us only about the small scales. But the
transport of momentum is usually controlled by the large eddies. The large-scale
dynamics, due to Loitsyansky (1939), is understood in isotropic turbulence as
starting with an integral invariant

I4 = −
∫

dx 〈u · u〉(x)x2 = 8π

∫ ∞

0
dx x4BLL(x) (48)

as a consequence of the general law of angular momentum conservation. The
integral I4 has physical significance in term of the energy spectrum rewritten to
the form

E(k) = 1

π

∫ ∞

0
dx 〈u · u〉(x) sin(kx) (49)
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with the useful property: for a random array of simple eddies for fixed size l, E(k)
peaks at around k ∼ π/l. Expanding sin(kx) into the Taylor’s series and assuming
that 〈u · u〉(x) falls rapidly with x, we obtain the expansion:

E(k) = I2 k2/4π2 + I4 k4/24π2 + · · · , (50)

where I2 = ∫
dx〈u · u〉(x) is known as Saffman’s invariant (Saffman, 1967a, b).

Note that assuming that longitudinal correlation exponentially falls at large x, we
would expect I2 = 0 and E(k) = I4 k4/24π2 + · · · . So, Iα = Iα , and we have in
grid turbulence two asymptotic spectra E(k) ∼ kα , α = 2, 4. The special cases
α = 2 and α = 4 are studied for arbitrary dimension d ∈ (2, 3) in detail in Section
5.1. and 5.2., respectively.

As it has been mentioned in previous paper of Adzhemyan et al. (1998) this
asymptotic behaviour is connected with the question about the initial condition
of decay. Since the self-similarity makes the time and wave-number asymptotics
interconnected, the initial condition limt→0 E(k, t) = �αkα stems simply from
the asymptotic constraint (36). From that it follows that the inertial range is not
formed for t → 0 [since l(t) → 0]. When t increases, the lower bound of the
inertial range moves towards the larger spatial scales and the E(k, t) spectrum
attains the shape typical for the three-dimensional developed turbulence.

The remarkable property of the �d−1k
d−1 energy spectrum is that it describes

δ(d)-correlated (in the real space representation) velocity fluctuations. In addition,
any increase of α (α > d − 1) in the spectrum �αkα induces more pronounced
pushing of the energy towards the smaller scales, which means that the spectrum
mentioned should be capable to model the response of the system on the variety
of the stirring regimes. In agreement with the proposed model, the presence of
strong stirring near the grid is the characteristic feature of the initial stages of the
past grid evolution.

4.2. The Parametrization at the Small Scale Turbulence Structure

Finally, we give an important suggestion for the improvement of the F (χ )
parametrization at large χ = kl. This suggestion is based on Eq. (30). To
achieve a more profound information about F we have considered the asymptotic
form

F (χ ) � 1 − h χαh as χ 
 1 and αh < 0 (51)

compatible with the normalization F (∞) = 1. In further we describe how the
unknown parameters h and αh can be determined. From Eq. (14) we obtain

ψ {F } (χ )
∣∣
F (χ)→1−h χαh

= −h ψ0(d, αh) χαh + O(χ2αh ), (52)
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where

ψ0(d, αh) = c′
T

∫



dq dp R0(q, p), (53)

R0(q, p) = K(p, q) {(qαh + pαh )(p q)−
2
3 −d [ Q(p, q) + Q(q, p) ]

− (1 + pαh )p− 2
3 −dQ(p, q) − (1 + qαh )q− 2

3 −dQ(q, p)}.
Due to Eq. (28) the zeroth order term ψ {F }(χ )|F=1 is not present in the series (52).
Insertion of Eq. (51) into left hand side of Eq. (26) gives

L̂(1 − h χαh ) = c1 χ−2/3 − c1 h (1 + c2 αh ) χαh− 2
3 . (54)

For χ 
 1 Eq. (26) acquires the form −hψ0(d, αh)χαh = c1χ
−2/3. Its solution is

h = − c1

ψ0 (d,−2/3)
= ch√

Ck

, ch = c10

ψ0 (d,−2/3)
, αh = −2

3
. (55)

5. NUMERICAL CALCULATION OF THE SCALING FUNCTION F(χ )

At this stage the formulation of the problem of finding F is mathematically
completed. Nevertheless, the structure of Eqs. (26), (35), (42) and (43) is out
of hand of the standard approaches due to non-local character of the integral
equation. Direct application of the standard numerical approaches seems to be
also impossible.

Our robust solving procedure is realized by using the least–squares criterion.
The subject of numerical minimization is the functional

F{variational parameters} ≡
∑

χ ∈ mesh points

χ−2
[
L̂ F (χ ) − ψ {F }(χ )

]2
, (56)

which sums up weighted squared differences L̂ F (χ ) − ψ {F }(χ ) calculated for
the system of the mesh points. The variational parameters of functional F are
included into parametrization of F [see Eq. (59) below] suggested with respect to
the asymptotical requirements F (∞) = 1 and (37).

The form of the functional F stems simply from a more general functional∫
dk (∂tE − T )2, which attains the minimum at ∂tE = T . To find the minimum

numerically steepest descent minimization procedure has been utilized. Of course,
the minimization of F must take into account Eqs. (35), (42) and (43). Thus,
the basic minimization algorithm has been combined with seldom iterative steps
taking into account these equations [the impact of the additional conditions will be
discussed in Section 5.1.]. The convergence towards the minimum was unviolated
thanks to the weak sensitivity of I {F }, Ck and c1 upon the changes in variational
parameters.
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By Adzhemyan et al. (1998) the evolution of decay and scaling behavior
has been examined in the special case d = 3 and α = 2, when the Eqs. (39) give
exponents (dependent only on α, see Section 4.1.)

αl = 2

5
, αD = −11

5
, c2 = − 3

11
(57)

in compliance with the earlier result of Saffman (1967a, b) coinciding with the
experimental finding [see e.g. McComb (1990)]. Using Eqs. (12) and (14) they
have calculated (cE)d=3 = 0.162329 and (cT )d=3 = 6.66̄, and, from Eqs. (42),
(43), (52), (55) and (57) they have obtained

c10 = 0.007994, ψ0 (d = 3,−2/3) = 0.009904, ch = 0.8071, Ck = 1.5

I {F } .

(58)

In general d-dimensional case one must have calculated value of ψ0, which is
needed for calculation of the internal parameter h defining the asymptotic behavior
of the scaling function F (χ ), in the whole dimension range from d = 2 up to d = 3,
see Eqs. (51) and (55). The value of h can be calculated only numerically if all
parameters of F (χ ) are known, such that their calculation must be performed in a
cycle with calculation of very function F (χ ) (their parameters). Note that a shape
of ψ0 is a result of asymptotic condition for large argument χ and its value does
not depend on α. The calculated dimension dependent values of ψ0 are given in
Table I for dimension from 2 up to 3:

Taking Eq. (51) into account the following improved parametrization of F (χ )
has been suggested by Adzhemyan et al. (1998):

F[a,m,c;h](χ ) = χ11/3
(
χ4 + 2m2χ2 + a4

)−11/12 (
1 + h (c2 + χ2)−1/3

)−1
. (59)

It contains the variational parameters m, a and c and also connected parameter h.
The parameters a and m determine the shape of F at small χ and its asymmetry,
respectively. Note that the parameter c guarantees the analyticity of F at small χ .
All of them depend on the dimension d.

Table I. The Value of ψ0(d) for Dimensions d ∈ (2, 3)

d 2 2.1 2.2 2.3 2.4

ψ0 −0.001370 0.000927 0.002991 0.004784 0.006291
d 2.44 2.45 2.5 2.6 2.64
ψ0 0.006557 0.006936 0.007511 0.008456 0.008758
d 2.65 2.7 2.8 2.9 3
ψ0 0.008828 0.009144 0.009599 0.009847 0.009904
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Table II. Parameters of F and the Kolmogorov Constant for α = 2

d a m c h

3.0 1.58 ± 0.01 0.68 ± 0.02 2.91 ± 0.04 0.6415580
2.9 1.72 ± 0.01 0.70 ± 0.10 3.0 ± 0.1 0.6833563
2.8 1.92 ± 0.01 0.80 ± 0.04 3.1 ± 0.1 0.7300551
2.7 2.19 ± 0.01 0.77 ± 0.02 3.03 ± 0.05 0.7919855
2.6 2.57 ± 0.05 0.75 ± 0.05 3.08 ± 0.05 0.8708454
2.5 3.05 ± 0.05 0.77 ± 0.03 2.8 ± 0.1 0.9971045
2.4 3.82 ± 0.01 0.70 ± 0.10 3.1 ± 0.1 1.1325046
2.3 5.30 ± 0.03 0.50 ± 0.01 2.8 ± 0.1 1.3973645
2.2 8.5 ± 0.1 0.50 ± 0.01 2.8 ± 0.1 1.9510900

5.1. Parametrization of the Scaling Function for α = 2

Minimization of the functional (56) has been performed with the resolution
of fifty mesh points uniformly distributed within the interval 0 < χ ≤ 14 and it
leads to the numerical values written in following Table II:

Fruitfulness of the minimization is demonstrated in Fig. 1 where solid lines
show the left hand (differential) side of Eq. (26) and circles represent discrete
values of the right hand (integral) side in points of calculation of the integral ψ .
Good agreement of the both sides has been achieved for dimension d ∈ (2.2, 3).
Noticeable discrepancy for small values of χ is seen for d = 2.2, and for d = 2.1,
it was already impossible to find minimum of the functional F (in the region of
b ≤ 5000,m ≤ 1000, c ≤ 1000 which were the upper starting values). In other
words, under the value of approximately d = 2.2 the solution of Eq. (26) can not
be obtained.

Behavior of the transfer T (k) will be discussed in Section 6. Here we limit
ourselves to several remarks about transfer dependence on dimension d. It is seen
from Fig. 1 that the minimum of T (k) (the maximal energy flux) moves along
to larger χ = kl (i.e. to vortex of a lower energy) if d decreases. Therefore, the
energy fluxes are smaller for a smaller d, what means a lower absolute value of
minimum on graphs. Also the width of the peak increases, i.e. the energetic region
increases and the inertial interval shifts to larger χ .

Fig. 1. Result of the minimization for d = 2.2, 2.6 and 3.0.
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Fig. 2. The Kolmogorov constant for α = 2 and 4.

Let us designate in our model by dc the boundary dimension (the border-
line) whereunder the function T (k) starts to acquire a positive value. The value
of dc = 2.65 was obtained for α = 2. Note that the energy transport is normal-
ized in order that it is negative for the energy flux directed from large scales
to small scales. Consequently the region of the inverse energy cascade is the re-
gion of positive energy flux. Calculation shows that for d decreasing to 2.1 the
region of inverse energy flux flues to wider interval of χ , and deeper to positive
region of energy transfer (see detail analysis of T (k) below). One can be convinced
that the differential part of Eq. (26) is also positive in case of α = 2, and the critical
dc belongs to the interval (2.4, 2.5).

Dependence of the Kolmogorov constant Ck on dimension d demonstrates
Fig. 2 (the solid line). Our minimalization procedure shows that Ck arises for
decreasing value of d and it diverges for d < 2.2 in correspondence with the result
of Adzhmyan et al. (1998) where authors found Ck → ∞ for d → 2.066 for model
with homogeneous turbulence only in the inertial interval.

A suitable step to compare the theory and experiment is to transform E(k, t)
into the form of the longitudinal spectrum E‖, [see e.g. Monin and Yaglom (1975)].
This transformation is realized with help of Eq. (40) with the result:

E‖

(
χ

l(t)
, t

)
=

∫ ∞

1
dz

(
z2 − 1

)
z−3 E(kz, t)

= [u(t)]2 l(t) Ck χ−5/3
∫ 1

0
dz (1 − z2) z2/3 F

(
χ

z

)
. (60)

The Fig. 3 shows the normalized spectrum E||/u2l in dependence on χ ≡ kl

for dimensions d = 2.2, 2.3, 2.6, 3. One can see that the inertial interval moves
to larger value of χ for decreasing d down to 2.2, and absolute value of energy
spectrum decreases for decreasing d.
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Fig. 3. Longitudinal component of the energy spectrum scaled to
u2l in logarithmic coordinates depending on χ = kl for four values
of d (d = 2.2, d = 2.3, d = 2.6 and d = 3) and α = 2.

5.2. Parametrization of the Scaling Function for α = 4

Similar results of examination of the evolution of decay and scaling behavior
have been obtained also in the case of α = 4, where the Eqs. (39) give exponents

αl = 2

7
, αD = −17

7
, c2 = − 3

17
(61)

Minimizing of the functional (56) with the resolution of fifty mesh points uniformly
distributed within the interval 0 < χ ≤ 14 leads to the following numerical values
in Table III:

Results of the minimization are shown in Fig. 4. The character of behaviour
of the spectrum T (k) is very similar to the case of α = 2. The discrepancy of both
the l.h.s. and r.h.s. of Eq. (26) becomes to be notable for values d < 2.2, i.e. for d

rather smaller then in the case of α = 2. Comparison of the energy transfer T (k)

Table III. Parameters of F and the Kolmogorov Constant for α = 4

d a m c h

3.0 0.85 ± 0.01 0.95 ± 0.01 2.84 ± 0.02 0.5897589
2.9 1.00 ± 0.05 1.00 ± 0.05 2.95 ± 0.05 0.6836230
2.8 1.14 ± 0.02 1.1 ± 0.1 2.9 ± 0.1 0.7296646
2.7 1.40 ± 0.02 1.17 ± 0.03 3.0 ± 0.1 0.7857056
2.6 1.83 ± 0.01 1.15 ± 0.05 2.7 ± 0.1 0.8560200
2.5 2.01 ± 0.01 1.50 ± 0.02 2.5 ± 0.1 0.9634254
2.4 2.8 ± 0.1 1.7 ± 0.1 3.0 ± 0.1 1.1084236
2.3 3.8 ± 0.1 2.2 ± 0.1 2.6 ± 0.1 1.3626610
2.2 7.2 ± 0.1 1.9 ± 0.1 2.8 ± 0.1 1.8811520
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Fig. 4. Result of the minimization for d = 2.2, 2.6 and 3.0.

in the cases of α = 2 and α = 4 for fixed dimension d shows that the energy flux
is smaller for α = 4. The borderline for T (k) is equal dc = 2.45, but unlike the
case of α = 2, here the differential part of Eq. (26) has no borderline because it is
negative in the whole interval of d.

The Kolmogorov constant acquires slightly higher value then in the case
α = 2 in the whole interval of d, see Fig. 2, and here it diverges for rather
lower dimension (d

.= 2.1). The normalized longitudinal spectrum is shown in
Fig. 5. Comparison of this figure with Fig. 3 shows that absolute values of the
spectra for α = 4 acquire slightly lower values in comparison with the spectra for
α = 2.

6. ANALYSIS OF THE ENERGY TRANSFER

The energy transfer T (k, t), see Eq. (7), is in close relation with triple velocity
correlation function

〈vi(k) vj (p) vl(q)〉 ≡ δ(k + p + q) Dijl(kpq) (62)

Fig. 5. Longitudinal component of the energy spectrum scaled to
u2l in logarithmic coordinates depending on χ = kl for four values
of d (d = 2.2, d = 2.3, d = 2.6 and d = 3) and α = 4.
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which determines the dynamics of the decay of turbulence. From the integral
identity

∫ ∞
0 dk T (k) = 0 one has T (k) = −(2π )d ∂ki

Ji(k), where Ji(k) represents
the spectral density of energy flux through the spectrum. Owing to isotropy one
can write

Ji(k) = ki J (k), I (k) = Sd J (k) kd, (63)

where I (k) has the meaning of the total energy flux outwards through the surface
of a sphere of radius k in momentum space. The flux I (k) has to satisfy the obvious
limiting I (0) = I (∞) = 0. In the inertial range both the viscosity and the energy
injection are unimportant, so there T (k) = 0. Due to zero of the total integral of
T (k) in this case the direction of the energy flux must differ in different regions of
spectrum.

More complex picture of the energy transfer along the whole spectrum can be
given by detailed analysis of the integrand R(q, p; χ ) in (15). The negative energy
transfer corresponds to “normal” energy cascade when the energy flows from large
to small scales (to large k). The positive energy transfer corresponds to an inverse
energy cascade with opposite energy flow direction. In 3-dimensional developed
turbulence the full energy transfer is always negative in correspondence with
phenomenological image of the vortex cascade decay (McComb, 1990; Davidson,
2004). Separate contributions into the transfer in a region of definition of wave
vector “triade” {kpq}, fulfilling the condition k + p + q = 0, can possess different
signs. Positive contributions start to increase in the case of decreasing dimension
d, what leads to the inverse cascade of energy (see below).

The integrand R(q, p; χ ) possesses a nontrivial topology and is symmetric
to the axis p = q as it follows from (15). In general, three regions of the “triade”
{kpq} in the integration range � can be distinguished: two with creation of the
inverse energy flow (R > 0) and one with the direct energy flow (R < 0).

The first region (I.) is a region of “local” triades (all wave vectors of ap-
proximately the same magnitude) where an inverse energy flow is generated. In
the dimensionless variables it extends to the region of small {p, q}. Value of R

decreases towards to non-local triades and it passes into another region.
In the second region (II.) of the inverse energy flow which ranges along both

borders of the integration region (p = q − 1, p = q + 1). This region corresponds
to “strongly non-local” triades when q �∼= p and p, q 
 k. This region appears
for sufficiently high values of p, q. Here the integrand gradually achieves its
maximum and towards to more non-local triades it slowly decreases to zero .

The third region (III.) covers bulk of the integration range along the axis of
symmetry of R where it decreases to negative values with an increase of non-
locality to some minimum and then gradually increases to zero. These “non-local”
triades (but p ∼= q) generate the direct energy flux.

Note that if the wave vectors {k, p, q} are transformed back to dimensional
vectors in units of 1/l, see Eq. (20), then these triades can be figured out by
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Fig. 6. Example of local, non-local and strongly non-local triade (from the left to the right).

the schematic triangles. The example of local (I.), non-local (III.) and strongly
non-local (II.) triades is shown in Fig. 6.

Ranges of the three regions as well as its contribution into integral of the
energy transfer nontrivially vary with changes of χ = kl. Below we shortly analyze
the triade contribution for α = 2 as an example.

6.1. Analysis of Energy Transfer for d = 3

In this section we consider as an example the contribution of different “tri-
ades” {kpq} in the case of d = 3, α = 2 and the parametrization of the scale
function F (χ ) by the following numerical values: b = 1.570,m = 0.657, c =
2.838, h = 0.643. The sign of the contribution is demonstrated in Fig. (7a–d)
where the integrand R(q, p; χ ) is presented for values of χ = 0.1, 0.9, 1.5 and 3.
Here the surface out of the integration range � is not displayed.

One can see that a positive contribution from the I. region of local triades for
χ = 0.1, see Fig. 7a, is negligible and it starts to increase for increasing value of
χ . The increasing positive lobe can be observed also for p ∼= q ∼= 1.

Notable negative contribution is given by the non-local triades in the III. re-
gion. The II. strong non-local region with a positive contribution is very significant.
Here the integrand R acquires considerably lower absolute values in comparison
with values in the III. region, and as well R decreases essentially slower here then
R arises in the III. region. In result, the values in the both regions compensate each
other and give very small but negative value of R.

As χ increases the relative contribution of various regions into the energy
transfer varies. One can see in Fig. 7b that for χ = 0.9 the positive contribution
of local triades (I. region) starts to arise. Nevertheless, this contribution together
with positive values in other regions can not compensate rising contribution of
the central region of non-local triades, so the integral transfer acquires gradually
larger negative values.
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Fig. 7. Transfer for d = 3 and χ = 0.1, 0.9 (at the top), χ = 1.5, 3 (at the bottom).

Positive contribution of the local triades starts to arise when χ increases,
and the importance of positive contribution of the strong non-local triades starts
to be negligible. It is demonstrated in Fig. 7c and d showing the value of R for
χ = 1.5 and χ = 3.0, respectively. One can see changes in the region of non-
local triades with a negative contribution, where two symmetrical lobes arise with
minimal values. Positive contribution of the local triades starts to predominate
over negative contribution of the non-local triades and so the energy transfer starts
to arise.
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Fig. 8. Transfer for d = 2.7, χ = 1.5, 3.
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Fig. 9. Transfer for d = 2.5, χ = 1.5, 3.

Analysis of the integrand R for a larger value of χ ∼> 5 shows that two
positive local lobes in the I. region of local triades start to expand and the
integral energy transfer gradually increases from its negative value towards to
zero.

6.2. Analysis of Energy Transfer for d < 3

Parametrization of the scaling function F (χ ) for dimensions d ≤ 3 and α = 2
is given in Table II. It is well known that full integral of the energy transfer can
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Fig. 10. Transfer for d = 2.3, χ = 1.5, 3.

be positive for d = 2, i.e. the energy transfer can be inverse (McComb, 1990;
Davidson, 2004). The negative energy transfer (for d = 3) gradually changes
to the inverse positive energy transfer as it demonstrate the Figs. 8–10 in two
cases of χ = 1.5 and 3. The integrand R(χ ) possesses rather complicated struc-
ture in the case of d < 3 in comparison with the case of d = 3. Another re-
gions of both the direct as well as the inverse energy flows arise in the inte-
gration limits. It is important that for d < 3 and small χ positive contribution
predominates over negative ones, and the full integral T (k), (14, 15) can be
positive.

7. CONCLUSION

The model is presented which enables to calculate the scaling forms of
the energy spectrum and the energy transfer of a decaying turbulence in the d-
dimensional case for d ∈ (2, 3). The aim of the work was to study the isotropic
and homogeneous turbulence of the energy–containing and adjacent inertial range
in which the decay laws acquire the power form. The initial point of our study
represents the results obtained for the stationary model of the randomly forced
turbulence with the extended form of the forcing. To describe a free decay of the
past–grid turbulence the results of the stationary model of the randomly stirred
fluid were modified. The assumption about the slowness of the time evolution
takes place for the high k and late time stages of the power decay. But for them,
in addition, the Reynolds number must be kept sufficiently large.

Since the spectrum behavior in the interval of small k in the Navier–Stokes
turbulence has not been firmly established up to now, we have adopted for this
aim the Saffman and Loitsyansky hypothesis known for d = 3. The computation
of the scaling function has been performed for d ∈ (2, 3) and α = 2 and α = 4. In
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the both cases the evaluated longitudinal energy spectrum E‖ exhibits a promising
agreement with the turbulence data in the wave–number range from 0.1/l up to
10/l. In this range E‖ changes approximately by two orders of magnitude. By
Davidson (2004), while a stationary grid may well give an E ∼ k4 spectrum,
as suggested by the −5/2 decay law in the final period of decay, a grid which is
vigorously shaken might be able to impart sufficienty momentum to the turbulence
to ensure an E ∼ k2 spectrum. (In such a case I2 will not exist.) In d-dimensions
the situation can be more complex. The entire issue of E ∼ k4 versus E ∼ k2

spectra is still a matter of some controversy.
The shape of the function T (χ/l, t) is in a qualitative compliance with

the canonical expectations for the energy–containing range (McComb, 1990).
Nevertheless, due to insufficient accuracy and reproducibility of the available
experimental data, the quantitative testing of the third order statistics represents a
doubtful task.
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